Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Рассмотрим треугольники ADC и CBD.
∠DCA=∠CBA (т.к. ∠DCA равен половине градусной меры дуги CA по четвертому свойству углов, связанных с окружностью, и на эту же дугу опирается
вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по
теореме).
∠CDB - общий для обоих треугольников, следовательно, по
признаку подобия, треугольники ADC и CBD -
подобны.
Следовательно, по определению подобных треугольников запишем:
CD/BD=AC/BC=AD/CD
AC/BC=AM/MB=7/9 (по первому
свойству биссектрисы).
Получаем, что:
AD/CD=7/9
AD=CD*7/9
И...
CD/BD=7/9
9CD=7BD
BD=CD*9/7
BD=AD+AB=AD+9+7=AD+16
AD+16=CD*9/7
Подставляем значение AD, которое получили ранее AD=CD*7/9
CD*7/9+16=CD*9/7
16=CD*9/7-CD*7/9
Приводим к общему знаменателю:
16=(9*9*CD-7*7*CD)/(7*9)
16=(81CD-49CD)/63
16*63=81CD-49CD
16*63=32CD
CD=16*63/32=63/2=31,5
Ответ: CD=31,5
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 2. Найдите площадь трапеции.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 57.
В прямоугольном треугольнике один из катетов равен 7, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.
Комментарии: