ОГЭ, Математика. Геометрия: Задача №8D1B00 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №8D1B00

Задача №794 из 1087
Условие задачи:

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 6:5. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.

Решение задачи:

BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP - биссектриса, по теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC/AB=6/5.
AM=AC/2 => AC=2AM
Подставляем это значение AC в равенство AC/AB=6/5:
2AM/AB=6/5
AM/AB=6/10=3/5
AM/AB=KM/BK=3/5
KM=3/5*BK
Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота, то можем записать:
SAKM=1/2*h*KM=1/2*h*(3/5*BK)=3/5*(1/2*h*BK)=3/5*SABK (т.к. высота h для этих треугольников общая)
SABK=5/3*SAKM
SABK+SAKM=SABM=SABC/2
5/3*SAKM+SAKM=SABC/2
8/3*SAKM=SABC/2
SAKM=3/16*SABC
По тому же свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=6/5 (по условию задачи), следовательно, CP=6/5*PB
SAPC=1/2*h*CP=1/2*h*(6/5*PB)=6/5*(1/2*h*PB)=6/5*SABP,
SABP+SAPC=SABC
SABP+6/5*SABP=SABC
11/5*SABP=SABC
SABP=5/11*SABC
SKPCM=SABC-SABP-SAKM=SABC-5/11*SABC-3/16*SABC=176/176*SABC-80/176*SABC-33/176*SABC=63/176*SABC
Отношение SAKM к SKPCM равно (3/16*SABC)/(63/176*SABC)=(3/16)/(63/176)=(3*176)/(16*63)=(3*11)/(63)=11/21
Ответ: 11/21

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B91F47

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.



Задача №165C36

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=18, а сторона AC в 1,2 раза больше стороны BC.



Задача №20E8E9

Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.



Задача №D1A609

На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.



Задача №37BCA1

Тангенс острого угла прямоугольной трапеции равен 2/9. Найдите её большее основание, если меньшее основание равно высоте и равно 54.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства биссектрисы.
1) Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
2) Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
3) Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
4) Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
5) Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
6) Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса).
7) Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, причём даже при наличии трисектора.
8) В равнобедренном треугольнике биссектриса угла, противоположного основанию треугольника, является медианой и высотой.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика