ОГЭ, Математика. Геометрия: Задача №BF15E0 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №BF15E0

Задача №502 из 1087
Условие задачи:

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=3 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Решение задачи:

Рассмотрим треугольники ADC и CBD.
∠DCA=∠CBA (т.к. ∠DCA равен половине градусной меры дуги CA по четвертому свойству углов, связанных с окружностью, и на эту же дугу опирается вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по теореме).
∠CDB - общий для обоих треугольников, следовательно, по признаку подобия, треугольники ADC и CBD - подобны.
Следовательно, по определению подобных треугольников запишем:
CD/BD=AC/BC=AD/CD
AC/BC=AM/MB=3/12 (по первому свойству биссектрисы).
Из этих равенств выписываем:
AD=CD*3/12
BD=CD*12/3=4CD, (BD=AD+AB=AD+12+3=AD+15)
AD+15=4CD
CD*3/12+15=4CD
15=4CD-CD*3/12=4CD-CD/4
15=(16CD-CD)/4
15*4=15CD
CD=4
Ответ: CD=4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №56179A

Стороны AC, AB, BC треугольника ABC равны 23, 7 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №7C632F

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=27, CM=9. Найдите AO.



Задача №9E0AF3

Сторона ромба равна 36, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №1B3298

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.



Задача №F9DD7F

В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 30°. Найдите величину угла ODC.

Комментарии:


(2014-05-29 15:56:34) НЯня: Спасибочки!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства биссектрисы.
1) Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
2) Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
3) Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
4) Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
5) Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
6) Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса).
7) Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, причём даже при наличии трисектора.
8) В равнобедренном треугольнике биссектриса угла, противоположного основанию треугольника, является медианой и высотой.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика