В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=10:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника ABC.
BM -
медиана треугольника АВС,
следовательно, она делит этот треугольник на два равных по площади треугольника (
свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM и проведем
высоту из вершины А.
Высота h так же является
высотой для треугольников ABK и AKM.
Значит их площади:
SABK=h*BK*1/2
SAKM=h*KM*1/2
Найдем отношение этих площадей:
SABK/SAKM=(h*BK*1/2)/(h*KM*1/2)
SABK/SAKM=BK/KM=10/9
Т.е.
SABK=SAKM*10/9
SABK+SAKM=SABM=SABC/2
SAKM*10/9+SAKM=SABC/2
SAKM*19/9=SABC/2
SAKM=(SABC/2)*9/19
SAKM=9*SABC/38
Проведем отрезок CK и рассмотрим треугольники AKM и CKM.
Проведем
высоту KF. Эта
высота является общей для обоих этих треугольников. Площади этих треугольников:
SAKM=KF*AM*1/2
SCKM=KF*CM*1/2
KF=CM (так как BM-
медиана), следовательно SAKM=SCKM=9*SABC/38
Тогда SCKB=SCMB-SCKM=SABC/2-9*SABC/38=19*SABC/38-9*SABC/38=10*SABC/38
Вернемся к первоначальному рисунку и проведем отрезок MR, параллельный AP.
Для треугольника APC MR -
средняя линия, так как проходит через середину AC и параллельна AP.
Следовательно, по
теореме о средней линии, PR=RC.
Рассмотрим треугольники MBR и KBP.
∠MBR - общий для обоих треугольников.
∠BKP=∠BMR, так как они
соответственные (для параллельных прямых KP и MR и секущей MB).
Значит, по
первому признаку, данные треугольники
подобны.
Следовательно:
BM/BK=BR/BP
(BK+KM)/BK=(BP+PR)/BP
1+KM/BK=1+PR/BP
KM/BK=PR/BP=9/10 (по условию задачи)
Проведем
высоту KD, как показано на рисунке.
KD - является
высотой для треугольников KBP и KCP.
SKBP=KD*BP*1/2
SKCP=KD*CP*1/2=KD*(PR+CR)*1/2=KD*(2PR)*1/2
Найдем отношение этих площадей:
SKBP/SKCP=(KD*BP*1/2)/(KD*(2PR)*1/2)
SKBP/SKCP=BP/(2PR)=(BP/PR)/2=(10/9)/2=5/9
SKBP=SKCP*5/9
SCKB=10*SABC/38=SKBP+SKCP=SKCP*5/9+SKCP=SKCP*5/9+SKCP*9/9=SKCP*14/9
10*SABC/38=SKCP*14/9
SKCP = SABC*(10/38)*(9/14) = SABC*90/(38*14)
SKPCM = SCKM+SKCP = SABC*9/38+SABC*90/(38*14) = SABC*126/(38*14)+SABC*90/(38*14) = SABC*216/(38*14) = SABC*216/(38*14) = SABC*108/(19*14) = SABC*54/(19*7) = SABC*54/133
SKPCM/SABC = (SABC*54/133)/SABC = 54/133
Ответ: 54/133
Поделитесь решением
Присоединяйтесь к нам...
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 25°. Найдите больший угол параллелограмма.
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.
Лестница соединяет точки A и B и состоит из 15 ступеней. Высота каждой ступени равна 28 см, а длина – 96 см. Найдите расстояние между точками A и B (в метрах).
Сторона ромба равна 38, а один из углов этого ромба равен 150°. Найдите высоту этого ромба.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 37°, угол ABC равен 25°. Найдите угол ACB. Ответ дайте в градусах.
Комментарии:
(2015-01-13 18:55:19) Администратор: Чуть выше отношения мы записали чему равны площади обоих треугольников и разделили одну площадь на другую. Получили, что отношение площадей равно BP/(2PR) или (BP/PR)/2. А еще раньше в решении мы выяснили, что KM/BK=PR/BP=9/10 => BP/PR=10/9 => (BP/PR)/2=(10/9)/2=5/9
(2015-01-13 18:55:19) Администратор: Чуть выше отношения мы записали чему равны площади обоих треугольников и разделили одну площадь на другую. Получили, что отношение площадей равно BP/(2PR) или (BP/PR)/2. А еще раньше в решении мы выяснили, что KM/BK=PR/BP=9/10 => BP/PR=10/9 => (BP/PR)/2=(10/9)/2=5/9
(2015-01-13 14:27:00) : как вы определили что треугольник BKP относится к треугольнику KCP как 5 к 9
(2015-01-13 14:24:55) : объясните как решается задача