ОГЭ, Математика. Геометрия: Задача №52C267 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №52C267

Задача №237 из 1087
Условие задачи:

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.

Решение задачи:

По условию задачи AB=BC=CA (т.к. треугольник ABC - равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MN - средняя линия треугольника ABC. Следовательно, MN=AK и MN||AK (по теореме о средней линии).
NK - тоже средняя линия, равна AM и параллельна AM.
Получается, что AM=MN=NK=KA, т.е. AMNK - ромб (по свойству ромба).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0C344D

Площадь прямоугольного треугольника равна 83/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №B4A79A

Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=6, AD=13, AC=38. Найдите AO.



Задача №4F0B29

Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.



Задача №126390

В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 130°. Найдите вписанный угол ACB. Ответ дайте в градусах.



Задача №C42955

В ромбе ABCD угол ABC равен 146°. Найдите угол ACD. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Средняя линия треугольника -
отрезок, соединяющий середины двух его сторон.
Теорема о средней линии треугольника.
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика