ОГЭ, Математика. Геометрия: Задача №17EEFC | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №17EEFC

Задача №884 из 1087
Условие задачи:

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=12, CM=18. Найдите AO.

Решение задачи:

Отрезки AN и CM - являются медианами треугольника ABC.
Тогда, применяя первое свойство медианы, можем записать:
AO/ON=2/1, т.е. ON=AO/2
При этом AN=AO+ON
12=AO+ON, подставляем в это уравнение первое равенство:
12=AO+AO/2 |*2
24=2AO+AO
24=3AO
AO=8
Ответ: 8

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E92343

Найдите площадь трапеции, изображённой на рисунке.



Задача №4F3CD0

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.



Задача №C1B4DE

Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №973E15

В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 12, а меньшее основание BC равно 4.



Задача №9915AE

Найдите площадь трапеции, изображённой на рисунке.

Комментарии:


(2019-06-06 10:47:20) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2019-06-06 09:29:24) : Точки м и н являются серединами сторон аб и бс треугольника абс соответственно отрезки ан см пересекаются в точке о ан 24 см 15 гайдиге ао
(2019-05-24 22:13:53) Администратор: Анна, к сожалению, такой информации у меня нет.
(2019-05-24 21:58:33) Анна : А это из 2-й части?
(2017-11-13 21:54:06) : Думаю, что просто задача составлена в общем виде. Т.е. условие будет использовано для нахождения различных величин. Для нахождения конкретно АО условия избыточны. К сожалению, это не редко встречается в задачах.
(2017-11-13 13:41:16) : почему использованы не все данные? например, зачем дано CM=18?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Медиана треугольника
- отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Свойства медианы треугольника:
1) Медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
2) Медиана разбивает треугольник на два равновеликих треугольника.
3) Треугольник делится тремя медианами на шесть равновеликих треугольников.
4) Большей стороне треугольника соответствует меньшая медиана.
5) Из векторов, образующих медианы, можно составить треугольник.
6) При аффинных преобразованиях медиана переходит в медиану.
7) Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):, где mc — медиана к стороне c; a, b, c — стороны треугольника. В частности, сумма квадратов медиан произвольного треугольника в 4/3 раза меньше суммы квадратов его сторон:
8) Формула стороны через медианы: , где ma, mb, mc медианы к соответствующим сторонам треугольника, a, b, c — стороны треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика