ОГЭ, Математика. Геометрия: Задача №B72AA0 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

По первому свойству, средняя линия трапеции равна полусумме оснований:
(2+6)/2=4
Ответ: 4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0BB4A3

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.



Задача №50A4DC

В треугольнике ABC угол C равен 90°, sinB=3/5, AB=10. Найдите AC.



Задача №0BB6AA

Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.



Задача №02D3B8

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 и 100.



Задача №08FD08

В треугольнике ABC угол C равен 90°, tgB=3/4, BC=12. Найдите AC.

Комментарии:


(2020-03-31 20:26:06) Администратор: Екатерина, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2020-03-12 18:54:43) екатерина: Основания трапеции равны 2 и 6 , а высота равна 5.Найдите площадь этой трапеции.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства трапеций:
1)Средняя линия трапеции параллельна основаниям и равна их полусумме.

a||c, c||b, c=(a+b)/2
2) Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии.

c=(a-b)/2
3) (Обобщённая теорема Фалеса). Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
4) В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
5) Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен (среднее гармоническое), где x и y — основания трапеции (формула Буракова).
7) Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
8) Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
9) Треугольники, лежащие на основаниях при пересечении диагоналей, подобные.
10) Треугольники, лежащие на боковых сторонах, равновеликие.
11) Если отношение оснований равно K, то отношение площадей треугольников, лежащих на основаниях равно K2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика