ОГЭ, Математика. Геометрия: Задача №FF0C20 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке.
Обозначим ключевые точки A, B, C и D.
ABCD образует четырехугольник.
В этом четырехугольнике:
∠A=90° (по определению квадрата).
∠B=∠D=90° (по свойству касательной).
Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°).
Т.е. ABCD - прямоугольник (по определению).
По свойству прямоугольника:
AB=CD=R
AD=BD=R
Т.е. ABCD - квадрат.
Из рисунка очевидно, что радиус равен половине стороны квадрата:
R=56/2=28
Ответ: 28

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №320015

Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=7, DK=14, BC=10. Найдите AD.



Задача №3A524F

Площадь прямоугольного треугольника равна 2003/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №181446

Катеты прямоугольного треугольника равны 15 и 1. Найдите синус наименьшего угла этого треугольника.



Задача №E5BAE8

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.



Задача №5D7F1F

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Квадрат -
прямоугольник, у которого все стороны равны.
Свойства квадрата:
1) Все углы квадрата прямые.
2) Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика