ОГЭ, Математика. Геометрия: Задача №EF5960 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №EF5960

Задача №861 из 1087
Условие задачи:

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.

Решение задачи:

По теореме об описанной окружности, центр описанной окружности лежит на точке пересечения серединных перпендикуляров сторон треугольника.
У прямоугольного треугольника центр окрудности лежит на середине гипотенузы, так же как и в треугольнике нашей задачи, следовательно данный треугольник прямоугольный.
Следовательно, можно применить теорему Пифагора:
AB2=BC2+AC2
AB - диаметр окружности, так как проходит через центр.
Тогда AB=2*R=2*15=30.
302=BC2+242
900=BC2+576
BC2=900-576=324
BC=18
Ответ: 18

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №07AA72

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.



Задача №1BB912

В трапецию, сумма длин боковых сторон которой равна 18, вписана окружность. Найдите длину средней линии трапеции.



Задача №83CBAE

ABCDEFGHIJ – правильный десятиугольник. Найдите угол ADI. Ответ дайте в градусах.



Задача №56A917

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 164. Найдите стороны треугольника ABC.



Задача №320015

Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=7, DK=14, BC=10. Найдите AD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема об окружности, описанной около треугольника.
Около любого треугольника можно описать окружность.
Центр описанной окружности выпуклого n-угольника (а треугольник таковым и является) лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности). Центр описанной окружности.
1) У остроугольного треугольника центр описанной окружности лежит внутри
2) У тупоугольного — вне треугольника
3) У прямоугольного — на середине гипотенузы.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика