ОГЭ, Математика. Геометрия: Задача №7ECA85 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Решение прислал пользователь Людмила
Проведем из прямого угла медиану и высоту, обозначив их m и h соответственно.
Если описать окружность вокруг треугольника, то центр этой окружности будет лежать на середине гипотенузы (по теореме об описанной окружности). Следовательно:
m=c/2=20/2=10
S=(1/2)hc => h=2S/c=2*502/20=52
По определению синуса:
sinβ=h/m=52/10=2/2
По таблице определяем, что β=45°
Угол γ является внешнем к β, следовательно γ=180°-β=180°-45°=135°
Треугольник, содержащий угол γ, равнобедренный, так как медиана m и половина гипотенузы равны (это мы выяснили ранее).
Следовательно, по свойству равнобедренного треугольника углы при основании равны (обозначены α).
Тогда, по теореме о сумме углов треугольника:
180°=γ+α+α
180°=135°+2α
α=22,5° - это один из искомых углов.
Другой искомый угол найдем по той же теореме об углах треугольника: 180°-90°-22,5°=67,5°
ответ: 22,5° и 67,5°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F95DA3

В равнобедренной трапеции основания равны 2 и 8, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №959276

В треугольнике ABC известно, что ∠BAC=62°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.



Задача №041DF3

В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.



Задача №289551

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?



Задача №B96811

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=33, CM=15. Найдите ON.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема об окружности, описанной около треугольника.
Около любого треугольника можно описать окружность.
Центр описанной окружности выпуклого n-угольника (а треугольник таковым и является) лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности). Центр описанной окружности.
1) У остроугольного треугольника центр описанной окружности лежит внутри
2) У тупоугольного — вне треугольника
3) У прямоугольного — на середине гипотенузы.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика