Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=14.
Проведем отрезки KH и HP.
Треугольники BKH и BPH являются
вписанными в данную окружность. А т.к. центр этой окружности располагается на середине их стороны BH, то это означает, что эти треугольники прямоугольные с гипотенузой BH (по
свойству описанной окружности).
Следовательно, /HKB и /HPB - прямые.
Рассмотрим четырехугольник BKHP, сумма углов любого четырехугольника равна 360°, следовательно /HKB+/KBP+/HPB+/PHK=360°
90°+90°+90°+/PHK=360°
/PHK=90°
То есть получается, что четырехугольник BKHP является
прямоугольником. Диагонали этого прямоугольника BH и PK.
PK=BH=14 (по свойству
прямоугольника)
Ответ: BH=14
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
В треугольнике ABC угол C равен 90°, sinB=3/5, AB=10. Найдите AC.
Найдите площадь параллелограмма, изображённого на рисунке.
В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=21, MN=14. Площадь треугольника ABC равна 27. Найдите площадь треугольника MBN.
Комментарии: