Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=30°. Ответ дайте в градусах.
Так как AC проходит через центр окружности, значит это диаметр.
Треугольник ABC вписан в окружность и центр окружности лежит на середине AC, следовательно треугольник ABC
прямоугольный с гипотенузой AC(по
теореме об описанной окружности).
По
теореме о сумме углов треугольника:
180°=∠A+∠B+∠C
180°=30°+90°+∠C
∠C=60°
Ответ: 60
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 155°. Найдите угол C. Ответ дайте в градусах.
Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные
65° и 50°. Найдите меньший угол параллелограмма.
Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, вписанной в этот треугольник.
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 12 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 5 м. Найдите длину троса.
Комментарии:
(2014-05-26 21:48:02) Алина: Потому что ∠ABC прямоугольный =90°
(2014-05-26 18:48:07) мариша: Откуда взяли 90°?
(2014-05-19 13:03:26) ольга: можно еще через дуги. дуга bc=60 т.к. ac диаметр ,то 360:2=180 значит дуга ab=120 и т.к. <с=1/2 дуги ab, то <с=60
(2014-05-18 12:58:49) Ирина: все понятно спасибо