ОГЭ, Математика. Геометрия: Задача №056CB5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №056CB5

Задача №411 из 1087
Условие задачи:

Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=16.

Решение задачи:

Вариант №1 (Прислал один из наших пользователей, имя не известно).
∠KBP=90° (по условию)
Прямоугольный треугольник KPB с гипотенузой PK вписан в окружность.
Следовательно, PK является диаметром окружности. (по теореме об описанной окружности).
KP=BH=16
Ответ: PK=16


Вариант №2.
Проведем отрезки KH и HP.
Треугольники BKH и BPH являются вписанными в данную окружность. А т.к. центр этой окружности располагается на середине их стороны BH, то это означает, что эти треугольники прямоугольные с гипотенузой BH (по свойству описанной окружности).
Следовательно, /HKB и /HPB - прямые.
Рассмотрим четырехугольник BKHP, сумма углов любого четырехугольника равна 360°, следовательно /HKB+/KBP+/HPB+/PHK=360°
90°+90°+90°+/PHK=360°
/PHK=90°
То есть получается, что четырехугольник BKHP является прямоугольником. Диагонали этого прямоугольника BH и PK.
PK=BH=16 (по свойству прямоугольника)
Ответ: PK=16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №AAF6DE

На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 4 м?



Задача №A625E2

Четырёхугольник ABCD вписан в окружность. Угол ABC равен 138°, угол CAD равен 83°. Найдите угол ABD. Ответ дайте в градусах.



Задача №08369A

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=32.



Задача №1541EF

К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=21, AO=75.



Задача №E566FC

Радиус окружности, описанной около равностороннего треугольника, равен 10√3. Найдите длину стороны этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема об окружности, описанной около треугольника.
Около любого треугольника можно описать окружность.
Центр описанной окружности выпуклого n-угольника (а треугольник таковым и является) лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности). Центр описанной окружности.
1) У остроугольного треугольника центр описанной окружности лежит внутри
2) У тупоугольного — вне треугольника
3) У прямоугольного — на середине гипотенузы.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика