ОГЭ, Математика. Геометрия: Задача №77ED1F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №77ED1F

Задача №134 из 1087
Условие задачи:

Сторона ромба равна 24, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Решение задачи:

Рассмотрим треугольник АВС, этот треугольник прямоугольный (по условию задачи). /A=60°, следовательно по теореме о сумме углов треугольника /АВС = 180°-90°-60°=30°. По свойству прямоугольного треугольника АС=АВ/2=24/2=12. Следовательно вторая половина стороны ромба = 24-12=12. Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: длины обоих отрезков равны 12.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №05E365

Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №0C3D58

Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=54° и ∠ACB=104°. Найдите угол DCB. Ответ дайте в градусах.



Задача №116D41

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.



Задача №110F37

На отрезке AB выбрана точка C так, что AC=6 и BC=4. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.



Задача №4257EE

Синус острого угла A треугольника ABC равен . Найдите CosA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства прямоугольного треугольника:
1) Сумма двух острых углов прямоугольного треугольника равна 90°.
2) Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
3) Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика