В равнобедренную трапецию, периметр которой равен 180, а площадь равна 1620, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Площадь трапеции:
SABCD=EF*(AD+BC)/2=1620
Периметр трапеции:
PABCD=AB+BC+CD+AD=180
AB=CD (так как
трапеция равнобедренная).
Чтобы окружность можно было вписать в трапецию должно выполняться условие - суммы противоположных сторон трапеции должны быть равны, т.е.
AD+BC=AB+CD
AD+BC=2AB (т.к. AB=CD)
Тогда:
PABCD=AB+BC+CD+AD=AB+2AB+AB=4AB=180
AB=45
Значит, AD+BC=2*45=90
SABCD=EF*(AD+BC)/2=EF*90/2=EF*45=1620
EF=36
Проведем
высоту BH, как показано на рисунке.
BH=EF=36, так как BEFH -
прямоугольник.
AH=(AD-BC)/2
По
теореме Пифагора:
AB2=BH2+AH2
452=362+AH2
2025=1296+AH2
729=AH2
√729=AH
27=AH=(AD-BC)/2
54=AD-BC, вспомним, что AD+BC=90
54=AD-(90-AD)
54=AD-90+AD
144=2AD
AD=72
Тогда BC=90-72=18
Рассмотрим треугольники AKF и CKE
AF=AD/2=72/2=36
CE=BC/2=18/2=9
∠AFK=∠CEK=90°
∠AKF=∠CKE (т.к. они
вертикальные)
По
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, AF/CE=KF/KE
36/9=KF/KE
4=(EF-KE)/KE (вспомним, что EF=36)
4KE=36-KE
5KE=36
KE=7,2
Ответ: 7,2
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности с центром в точке O равен 29, длина хорды AB равна 40 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
В треугольнике ABC известно, что AB=BC, ∠ABC=102°. Найдите угол BCA. Ответ дайте в градусах.
Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
Точка О – центр окружности, /ACB=32° (см. рисунок). Найдите величину угла AOB (в градусах).
Комментарии: