ОГЭ, Математика. Геометрия: Задача №5963C1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №5963C1

Задача №828 из 1087
Условие задачи:

В трапеции ABCD известно, что AD=4, BC=3, а её площадь равна 84. Найдите площадь трапеции BCNM, где MN — средняя линия трапеции ABCD.

Решение задачи:

Площадь трапеции вычисляется по формуле: произведение полусуммы оснований и высоты.
Т.е. для трапеции ABCD можем записать:
SABCD=h*(AD+BC)/2
84=h*(4+3)/2
168=7h
h=24
Для трапеции BCNM:
SBCNM=hBCNM*(MN+BC)/2
MN - это средняя линия, значит длина равна полусумме оснований:
MN=(AD+BC)/2=(4+3)/2=3,5
Высота трапеции BCNM равна половине высоты трапеции ABCD (по теореме Фалеса), тогда:
SBCNM=hBCNM*(MN+BC)/2=(h/2)*(3,5+BC)/2=(24/2)*(3,5+3)/2=12*3,25=39
Ответ: 39

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E8391B

Сторона ромба равна 22, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №276C90

Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №D2652B

В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №26768F

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.



Задача №9AB52E

Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Трапеция – это четырёхугольник, две противоположные стороны которого параллельны, а две другие не параллельны. Параллельные стороны трапеции называются основаниями, а непараллельные — боковыми сторонами.

Прямоугольная трапеция — трапеция, имеющая прямые углы при боковой стороне.
Трапеция, у которой боковые стороны равны, называется равнобокой, равнобочной или равнобедренной.
Средняя линия — отрезок, соединяющий середины боковых сторон.
Площадь трапеции вычисляется по следующим формулам:
, или
, где m - средняя линия трапеции.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика