В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
По второму свойству четырехугольника:
AB+CD=BC+AD=24
По
определению средней линии трапеции: m=(BC+AD)/2=24/2=12
Ответ: m=12
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 2√
В треугольнике ABC угол C прямой, AC=4, cosA=0,8. Найдите AB.
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.

, или
, где m - средняя линия трапеции.
Комментарии: