В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
По второму свойству четырехугольника:
AB+CD=BC+AD=24
По
определению средней линии трапеции: m=(BC+AD)/2=24/2=12
Ответ: m=12
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке О проведены диаметры AD и BC, угол
ABO равен 30°. Найдите величину угла ODC.
Найдите угол ABC. Ответ дайте в градусах.
Высота равнобедренной трапеции, проведённая из вершины C, делит основание AD на отрезки длиной 1 и 5. Найдите длину основания BC.
Диагонали AC и BD прямоугольника ABCD пересекаются
в точке O, BO=37, AB=56. Найдите AC.
В треугольнике ABC известно, что AB=8, BC=10, AC=12. Найдите cos∠ABC.

, или
, где m - средняя линия трапеции.
Комментарии: