В трапеции ABCD AB=CD, ∠BDA=54° и ∠BDC=33°. Найдите угол ABD. Ответ дайте в градусах.
∠ADC=∠BDA+∠BDC=54°+33°=87°.
Трапеция ABCD -
равнобедренная (т.к. AB=CD), следовательно, по
свойству равнобедренной трапеции, ∠BAD=∠ADC=87°.
Сумма углов любого выпуклого n-угольника равна 180°*(n-2).
Тогда сумма углов трапеции равна 180°*(4-2)=360°, следовательно ∠ABC+∠BCD=360°-87°-87°=186°
По тому же
свойству равнобедренной трапеции ∠ABC=∠BCD, тогда каждый из этих углов равен 186°/2=93°
В любой трапеции основания параллельны (по
определению), т.е. AD||BC, тогда, рассматривая BD как секущую, заметим, что ∠CBD=∠BDA=54° (т.к. это
внутренние накрест лежащие углы).
Тогда ∠ABD=∠ABC-∠CBD=93°-54°=39°
Ответ: 39
Поделитесь решением
Присоединяйтесь к нам...
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Периметр треугольника равен 54, одна из сторон равна 15, а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 84°. Найдите величину угла OMK. Ответ дайте в градусах.
Комментарии:
(2017-10-04 18:10:11) Администратор: Без вопроса, нет ответа.
(2017-10-03 15:43:18) : в трапеции авсд известно что ав сд угол вда 30 и угол вдс 110