ОГЭ, Математика. Геометрия: Задача №04BBC9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

ABCD - трапеция, следовательно, AD||BC.
∠CBD=∠ADB (т.к. это накрест-лежащие углы для параллельных прямых AD и BC).
Рассмотрим отношения сторон:
BC/BD=4/16=1/4
BD/AD=16/64=1/4
Тогда по второму признаку подобия треугольников, треугольники CBD и ADB подобны.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EDA3CF

Диагональ прямоугольника образует угол 50° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.



Задача №F63DA7

На стороне AC треугольника ABC отмечена точка D так, что AD=5, DC=7. Площадь треугольника ABC равна 60. Найдите площадь треугольника ABD.



Задача №F1A0A9

Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 2,4 м над землёй, а нижний отстоит от ствола дерева на 1,8 м?



Задача №0A7291

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.



Задача №8B0092

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.

Комментарии:


(2019-03-22 19:41:52) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2019-03-21 11:46:08) : основание bc и ad трапеции abcd равны соответственно 2 и 32 BD=8 ДОКАЖИТЕ ЧТО ТРЕУГОЛЬНИКИ СBD и BDA подобны
(2016-02-24 20:57:13) Никита: Сайт просто супер, очень помогает !!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Трапеция – это четырёхугольник, две противоположные стороны которого параллельны, а две другие не параллельны. Параллельные стороны трапеции называются основаниями, а непараллельные — боковыми сторонами.

Прямоугольная трапеция — трапеция, имеющая прямые углы при боковой стороне.
Трапеция, у которой боковые стороны равны, называется равнобокой, равнобочной или равнобедренной.
Средняя линия — отрезок, соединяющий середины боковых сторон.
Площадь трапеции вычисляется по следующим формулам:
, или
, где m - средняя линия трапеции.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика