В трапеции
ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Обратите внимание, рисунок не соответствует условию задачи (углы на рисунке заведомо меньше, чем в условии).
/ADC=/BDA+/BDC=67°+28°=95°.
Трапеция ABCD -
равнобедренная (т.к. AB=CD), следовательно, по
свойству равнобедренной трапеции, /BAD=/ADC=95°.
Сумма углов любого выпуклого n-угольника равна 180°*(n-2).
Тогда сумма углов трапеции равна 180°*(4-2)=360°, следовательно /ABC+/BCD=360°-95°-95°=170°
По тому же
свойству равнобедренной трапеции /ABC=/BCD, тогда каждый из этих углов равен 170°/2=85°
В любой трапеции основания параллельны (по
определению), т.е. AD||BC, тогда, рассматривая BD как секущую, заметим, что /CBD=/BDA=67° (т.к. это
внутренние накрест лежащие углы).
Тогда /ABD=/ABC-/CBD=85°-67°=18°
Ответ: /ABD=18°
Поделитесь решением
Присоединяйтесь к нам...
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 21°?
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 5 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 169°, угол ABC равен 160°. Найдите угол ACB. Ответ дайте в градусах.
Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

, или
, где m - средняя линия трапеции.
Комментарии: