ОГЭ, Математика. Геометрия: Задача №BF15E0 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №BF15E0

Задача №502 из 1087
Условие задачи:

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=3 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Решение задачи:

Рассмотрим треугольники ADC и CBD.
∠DCA=∠CBA (т.к. ∠DCA равен половине градусной меры дуги CA по четвертому свойству углов, связанных с окружностью, и на эту же дугу опирается вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по теореме).
∠CDB - общий для обоих треугольников, следовательно, по признаку подобия, треугольники ADC и CBD - подобны.
Следовательно, по определению подобных треугольников запишем:
CD/BD=AC/BC=AD/CD
AC/BC=AM/MB=3/12 (по первому свойству биссектрисы).
Из этих равенств выписываем:
AD=CD*3/12
BD=CD*12/3=4CD, (BD=AD+AB=AD+12+3=AD+15)
AD+15=4CD
CD*3/12+15=4CD
15=4CD-CD*3/12=4CD-CD/4
15=(16CD-CD)/4
15*4=15CD
CD=4
Ответ: CD=4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FC3809

Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.



Задача №734E34

В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=60, BC=40. Найдите CM.



Задача №04E270

Сторона равностороннего треугольника равна 103. Найдите его биссектрису.



Задача №12C88E

Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.



Задача №C9CE1D

Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.

Комментарии:


(2014-05-29 15:56:34) НЯня: Спасибочки!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема о вписанном угле окружности.
Вписанный угол измеряется половиной дуги, на которую он опирается.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика