ОГЭ, Математика. Геометрия: Задача №F60708 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F60708

Задача №382 из 1087
Условие задачи:

Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 27°.

Решение задачи:

∠AOB является центральным, следовательно, градусная мера дуги, на которую он опирается, равна этому углу.
∠C является вписанным, следовательно, его градусная мера вдвое меньше, чем градусная мера дуги, на которую он опирается (по теореме о вписанной угле).
∠C=27°/2=13,5°
Ответ: ∠C=13,5°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №038CAC

Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.



Задача №163D04

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 7°. Найдите величину угла OMK. Ответ дайте в градусах.



Задача №279454

Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол OVT. Ответ дайте в градусах.



Задача №74F521

На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.



Задача №4B3FF8

Найдите острый угол параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 41°. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема о вписанном угле окружности.
Вписанный угол измеряется половиной дуги, на которую он опирается.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика