Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Решение предложил пользователь Александр Круть
Рассмотрим
трапецию ACO1O2
Данная трапеция
прямоугольная, т.к. радиусы перпендикулярны
касательной AC (по
свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 -
прямоугольник.
По
теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(77+44)2=(O2K)2+(77-44)2
14641=(O2K)2+1089
(O2K)2=13552
O2K=√
Проведем отрезок AM, перпендикулярный CD. AM равняется искомому EF, так как AMFE образует прямоугольник.
Рассмотрим треугольники ACM и O2KO1.
∠O2KO1=∠AMC=90°
∠KO2O1=CAM (так как стороны улов попарно параллельны).
Следовательно, данные треугольники
подобны (по
первому признаку).
Тогда:
AM/O2K=AC/O2O1
Напомним: AC мы нашли ранее, O2K=AC, O2O1=R+r.
AM/AC=AC/(R+r)
AM=AC*AC/(R+r)
AM=(44√
AM=442*7/121
AM=13552/121=112
Ответ: 112
Поделитесь решением
Присоединяйтесь к нам...
Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=122° и ∠ACB=47°. Найдите угол DCB. Ответ дайте в градусах.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон.
Точка О – центр окружности, /BAC=40° (см. рисунок). Найдите величину угла BOC (в градусах).
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Комментарии:
(2017-04-24 01:47:07) Администратор: Александр, спасибо большое. Действительно, Ваше решение намного удобней и короче. Публикую его под Вашим именем.
(2017-04-20 07:07:40) Александр: Это еще не самое удобное решение. Вышлю почтой.
(2017-04-19 18:52:37) Администратор: Александр, я прислушался к Вашему совету и согласен с Вами. Я подобрал наиболее удобные для вычислений треугольники и переделал решение через подобие. Ответ сошелся с Вашим. Спасибо большое за подсказку.
(2017-04-18 22:26:29) Александр: К тому же использование тригономерических функций в дпнной задаче излишнее, можно просто через подобие треугольников. Будет проще.
(2017-04-18 15:26:52) Александр: Решение содержит ошибку. Правильный ответ 112.
(2016-09-27 13:01:37) Администратор: Ирина, спасибо большое, исправлено.
(2016-09-27 08:28:01) ирина: опечатка. Рассм. треуг.ОАО2 и ОСО1 (см. рис.1)
(2015-12-26 00:54:05) Галина: Спасибо!!!