ОГЭ, Математика. Геометрия: Задача №056CB5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №056CB5

Задача №411 из 1087
Условие задачи:

Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=16.

Решение задачи:

Вариант №1 (Прислал один из наших пользователей, имя не известно).
∠KBP=90° (по условию)
Прямоугольный треугольник KPB с гипотенузой PK вписан в окружность.
Следовательно, PK является диаметром окружности. (по теореме об описанной окружности).
KP=BH=16
Ответ: PK=16


Вариант №2.
Проведем отрезки KH и HP.
Треугольники BKH и BPH являются вписанными в данную окружность. А т.к. центр этой окружности располагается на середине их стороны BH, то это означает, что эти треугольники прямоугольные с гипотенузой BH (по свойству описанной окружности).
Следовательно, /HKB и /HPB - прямые.
Рассмотрим четырехугольник BKHP, сумма углов любого четырехугольника равна 360°, следовательно /HKB+/KBP+/HPB+/PHK=360°
90°+90°+90°+/PHK=360°
/PHK=90°
То есть получается, что четырехугольник BKHP является прямоугольником. Диагонали этого прямоугольника BH и PK.
PK=BH=16 (по свойству прямоугольника)
Ответ: PK=16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №106F52

В треугольнике ABC сторона AB=32, AC=64, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.



Задача №A44A54

Радиус окружности, вписанной в равносторонний треугольник, равен 12. Найдите высоту этого треугольника.



Задача №603AAE

Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.



Задача №5BBFC4

Стороны AC, AB, BC треугольника ABC равны 32, 13 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №34A270

Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).
Свойства прямоугольника:
1) Противолежащие стороны равны.
2) Диагонали прямоугольника равны
3) Вокруг прямоугольника всегда можно описать окружность.
4) Диагонали точкой пересечения делятся пополам;

Признак прямоугольника: Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика