Найдите острый угол параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 41°. Ответ дайте в градусах.
AD||BC (по определению параллелограмма).
Тогда биссектрису можно рассматривать как секущую.
∠BCA=∠DAC=41° (так как это накрест лежащие углы).
∠DAC=∠BAC=41° (по определению биссектрисы).
∠BAD=∠BAC+∠DAC=41°+41°=82°
Ответ: 82
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 146°. Найдите угол C . Ответ дайте в градусах.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=7 и HD=24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма.
Площадь прямоугольного треугольника равна 32√
В треугольнике ABC угол C равен 90°, sinA=0,75, AC=√
Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.
Комментарии:
(2024-03-06 09:48:37) : Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 40°. Ответ дайте в градусах.