Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 1°. Ответ дайте в градусах.
∠BCA=∠DAC=1° (т.к. это
накрест-лежащие углы)
А так как AC -
биссектриса, то ∠BAC=∠DAC=1°.
∠A=∠BAC+∠DAC=1°+1°=2°
Ответ: 2
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=17 и MB=19. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Стороны AC, AB, BC треугольника ABC равны 3√
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=8, BF=15.
Найдите площадь треугольника, изображённого на рисунке.
Комментарии: