Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.
Рассмотрим треугольники ABC и KBM.
/B - общий.
/BAC=/BKM (т.к. это
соответственные углы)
/BCA=/BMK (т.к. это тоже
соответственные углы)
Следовательно, эти треугольники
подобны по
первому признаку подобия.
Тогда по
определению подобных треугольников:
BA/BK=AC/KM
(BK+KA)/BK=AC/KM
BK/BK+KA/BK=AC/KM
1+KA/BK=AC/KM
1+3/2=AC/14
2/2+3/2=AC/14
5/2=AC/14
5/2=AC/14
AC=5*14/2=35
Ответ: AC=35
Поделитесь решением
Присоединяйтесь к нам...
Длина хорды окружности равна 60, а расстояние от центра окружности до этой хорды равно 40. Найдите диаметр окружности.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=13, CD=22. Найдите AD.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=20, DK=15, BC=12. Найдите AD.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.
Комментарии:
(2015-03-03 20:38:43) Елена: Да, спасибо большое
(2015-03-03 17:28:35) Администратор: Елена, я добавил в решение несколько подробностей. Так понятно?
(2015-03-03 15:55:25) Елена: Подскажите, пожалуйста, в 4 строке снизу от Ответа, возможно должно быть "2+3" в числителе?