Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
Рассмотрим треугольники ABC и BDE. Т.к. стороны
правильного шестиугольника равны, то и CA=AB=BD=DE, /A=/D, т.к. углы
правильного шестиугольника тоже равны. Следовательно, данные треугольники равны (по первому
признаку равенства треугольников). Тогда BC=BE.
Углы /BCA=/CBA=/EBD=/BED (по свойству
равнобедренного треугольника). Следовательно внутренние углы /С=/B=/E.
Данные выкладки справедливы для любой пары треугольников,следовательно все стороны внутреннего шестиугольника равны и все внутренние углы равны. Это означает, что внутренний шестиугольник - правильный (по
определению).
Поделитесь решением
Присоединяйтесь к нам...
Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=13, CD=22. Найдите AD.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 11°?
Найдите площадь треугольника, изображённого на рисунке.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=16, BF=12.
Какие из следующих утверждений верны?
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Диагонали ромба равны.
3) Тангенс любого острого угла меньше единицы.


Комментарии: