В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AВ*BC*cos∠ABC
92=52+72-2*5*7*cos∠ABC
81=25+49-70*cos∠ABC
81-25-49=-70*cos∠ABC
7=-70*cos∠ABC |:7
1=-10*cos∠ABC
cos∠ABC=1/(-10)=-0,1
Ответ: -0,1
Поделитесь решением
Присоединяйтесь к нам...
От столба к дому натянут провод длиной 10 м, который закреплён на стене дома на высоте 3 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 8 м.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ параллельны.
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.


Комментарии: