В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AВ*BC*cos∠ABC
92=52+72-2*5*7*cos∠ABC
81=25+49-70*cos∠ABC
81-25-49=-70*cos∠ABC
7=-70*cos∠ABC |:7
1=-10*cos∠ABC
cos∠ABC=1/(-10)=-0,1
Ответ: -0,1
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Точка О – центр окружности, /BAC=10° (см. рисунок). Найдите величину угла BOC (в градусах).
В прямоугольном треугольнике ABC катет AC=25, а высота CH, опущенная на гипотенузу, равна 10√
Найдите площадь трапеции, изображённой на рисунке.
В равнобедренной трапеции основания равны 3 и 5, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.


Комментарии: