В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AВ*BC*cos∠ABC
92=52+72-2*5*7*cos∠ABC
81=25+49-70*cos∠ABC
81-25-49=-70*cos∠ABC
7=-70*cos∠ABC |:7
1=-10*cos∠ABC
cos∠ABC=1/(-10)=-0,1
Ответ: -0,1
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Квадрат является прямоугольником.
3) Сумма углов любого треугольника равна
180°.
Точка О – центр окружности, /BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).
Диагональ прямоугольника образует угол 75° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
Найдите площадь трапеции, изображённой на рисунке.


Комментарии: