В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AВ*BC*cos∠ABC
92=52+72-2*5*7*cos∠ABC
81=25+49-70*cos∠ABC
81-25-49=-70*cos∠ABC
7=-70*cos∠ABC |:7
1=-10*cos∠ABC
cos∠ABC=1/(-10)=-0,1
Ответ: -0,1
Поделитесь решением
Присоединяйтесь к нам...
Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 28, сторона BC равна 19, сторона AC равна 34. Найдите MN.
Боковая сторона равнобедренного треугольника равна 25, а основание равно 30. Найдите площадь этого треугольника.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:4, KM=18.
Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: