В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AВ*BC*cos∠ABC
92=52+72-2*5*7*cos∠ABC
81=25+49-70*cos∠ABC
81-25-49=-70*cos∠ABC
7=-70*cos∠ABC |:7
1=-10*cos∠ABC
cos∠ABC=1/(-10)=-0,1
Ответ: -0,1
Поделитесь решением
Присоединяйтесь к нам...
Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=30°. Ответ дайте в градусах.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 7°. Найдите величину угла OMK. Ответ дайте в градусах.
Площадь прямоугольного треугольника равна
722√
Найдите тангенс угла
AOB.


Комментарии: