На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=2, BH=18. Найдите CH.
Рассмотрим треугольники ACH и BCH.
Докажем, что это подобные треугольники:
∠AHC=∠BHC=90° (так как CH -
высота).
По
теореме о сумме углов треугольника:
180°=∠CAH+∠AHC+∠HCA
180°=∠CAH+90°+∠HCA
90°=∠CAH+∠HCA
∠CAH=90°-∠HCA
Заметим, что:
∠BCH=90°-∠HCA
Получается, что ∠CAH=∠BCH
Тогда, по первому признаку подобия, данные треугольники подобны, т.е. можем записать пропорцию:
AH/CH=CH/BH
AH*BH=CH2
2*18=CH2
36=CH2
CH=√36=6
Ответ: 6
Поделитесь решением
Присоединяйтесь к нам...
Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 11 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=√
На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности
в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=12, BD=20, AB=7. Найдите DO.
Сколько досок длиной 4 м, шириной 20 см и толщиной 30 мм выйдет из бруса длиной 80 дм, имеющего в сечении прямоугольник размером 30 см на 40 см?
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит угол ВАС пополам. Найдите сторону АВ, если сторона АС равна 4.
Комментарии:
(2024-02-28 13:41:15) Юля: Прямая параллельная стороне АС треугольника АВС , пересекает стороны АВ и ВС в точках М и N соответственно. АВ =8 , АС =8 , МN= 2 Найдите АМ