В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=86, SQ=43.
∠QNM - является
вписанным в окружность и опирается на дугу QM.
∠QPM тоже является
вписанным в окружность и опирается на дугу QM.
Следовательно, эти углы равны.
∠QNM=∠QPM
Рассмотрим треугольники NPQ и SPQ.
∠SQP - общий
∠QNP=∠SPQ
По
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, NQ/QP=QP/SQ
NQ=QP2/SQ=862/43=88=7396/43=172
NS=NQ-SQ=172-43=129
Ответ: NS=129
Поделитесь решением
Присоединяйтесь к нам...
В трапецию, сумма длин боковых сторон которой равна 18, вписана окружность. Найдите длину средней линии трапеции.
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
В треугольнике ABC известно, что AC=38, BM — медиана, BM=17. Найдите AM.
Сторона ромба равна 60, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Комментарии:
(2017-05-04 20:09:35) Администратор: NQ/QP=QP/SQ => NQ=QP*QP/SQ=QP^2/SQ
(2017-05-04 16:56:15) : почему в квадрате?
(2015-03-09 17:03:15) Рина: спасибо за красивое решение