ОГЭ, Математика. Геометрия: Задача №04BBC9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

ABCD - трапеция, следовательно, AD||BC.
∠CBD=∠ADB (т.к. это накрест-лежащие углы для параллельных прямых AD и BC).
Рассмотрим отношения сторон:
BC/BD=4/16=1/4
BD/AD=16/64=1/4
Тогда по второму признаку подобия треугольников, треугольники CBD и ADB подобны.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A2BBBF

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.



Задача №1F36A0

На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что /EAB=45°. Найдите ED.



Задача №1520BE

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 50° и 85°. Найдите меньший угол параллелограмма.



Задача №0A3F51

В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.



Задача №A88A43

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.

Комментарии:


(2019-03-22 19:41:52) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2019-03-21 11:46:08) : основание bc и ad трапеции abcd равны соответственно 2 и 32 BD=8 ДОКАЖИТЕ ЧТО ТРЕУГОЛЬНИКИ СBD и BDA подобны
(2016-02-24 20:57:13) Никита: Сайт просто супер, очень помогает !!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Признаки подобия треугольников:
1) Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

2) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

a/d=c/f
3) Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

a/d=c/f=b/e
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика