Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен 74°. Ответ дайте в градусах.
По
теореме об описанной окружности, центр описанной окружности лежит на точке пересечения
серединных перпендикуляров сторон треугольника.
У
прямоугольного треугольника центр окрудности лежит на середине гипотенузы, так же как и в треугольнике нашей задачи, следовательно, данный треугольник
прямоугольный.
Следовательно, угол ACB=90°.
По
теореме о сумме углов треугольника:
180°=∠ACB+∠CBA+∠BAC
180°=90°+∠CBA+74°
∠CBA=180°-90°-74°
∠CBA=16°
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 15, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.
Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
Тангенс острого угла прямоугольной трапеции равен 2/9. Найдите её большее основание, если меньшее основание равно высоте и равно 54.
Комментарии:
(2018-03-10 15:07:06) ПЕТЯ: центр окружности описанной около треугольника abc лежит на стороне ab НАЙДИТЕ УГОЛ АБС ЕСЛИ УГОЛ ВАС =33 РЕШУ
(2017-05-14 18:53:14) Администратор: Да, можно и так это определить.
(2017-05-13 18:44:14) : То, что треугольник прямоугольный следует из теоремы: вписанный угол, опирающийся на диаметр, равен 90 градусам