Катеты прямоугольного треугольника равны 20 и 15. Найдите синус наименьшего угла этого треугольника.
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=152+202
AB2=225+400=625
AB=25
Меньший угол лежит напротив меньшей стороны, 15<20, следовательно
синус меньшего угла будет равен
отношению меньшей стороны к гипотенузе, т.е. 15/25=3/5=0,6
Ответ: 0,6
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь трапеции, диагонали которой равны 13 и 11, а средняя линия равна 10.
В равнобедренную трапецию, периметр которой равен 200, а площадь равна 2000, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 7.
Комментарии:
(2016-12-28 02:13:35) Администратор: Влад, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-12-25 22:08:36) влад: в прямоугольном треугольнике катеты раны 15 и 20 см. найти площадь