Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.
AB=85, AC=40
По
теореме Пифагора найдем второй катет:
AB2=AC2+BC2
852=402+BC2
BC2=7225-1600
BC2=5625
BC=75
Площадь любого треугольника равна половине произведения
высоты и стороны, к которой проведена
высота. В
прямоугольном треугольнике
высота совпадает с одним из катетов, получается, что площадь
прямоугольного треугольника равна половине произведения катетов.
SABC=(AC*BC)/2=(40*75)/2=1500
Ответ: 1500
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, AC=24, AB=25. Найдите sinB.
Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.
Комментарии:
(2020-12-22 17:10:53) арсен: Найти неизвестный катет прямоугольного треугольника, если его гипотенуза равна 85 см, а один из катетов 13 см.