Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.
Введем обозначения как показано на рисунке.
AB и BC - катеты, AC -
гипотенуза.
По
теореме Пифагора:
AC2=AB2+BC2
AC2=122+162
AC2=144+256
AC2=400
AC=√400=20
Ответ: 20
Поделитесь решением
Присоединяйтесь к нам...
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 5 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.
Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.
Высота равностороннего треугольника равна 78√
Комментарии: