Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=7, AC=20. Найдите AO.
Рассмотрим треугольники AOD и BOC.
По определению трапеции, AD||BC, а AC можно рассматривать как секущую при параллельных прямых. Тогда:
∠DAO=∠BCO (накрест лежащие углы).
∠AOD=∠BOC (вертикальные углы).
Тогда, по первому признаку подобия (по двум углам), данные треугольники подобны.
Следовательно, можем записать пропорцию:
AD/BC=AO/OC
7/3=AO/OC
7*OC=3*AO
При этом AO+OC=AC=20
OC=20-AO, подставляем это равенство в ранее полученную пропорцию:
7*(20-AO)=3*AO
140-7*AO=3*AO
140=7*AO+3*AO
140=10*AO
AO=140/10=14
Ответ: 14
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.
естница соединяет точки A и B и состоит из 40 ступеней. Высота каждой ступени равна 19,5 см, а длина – 40 см. Найдите расстояние между точками A и B (в метрах).
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
В параллелограмме ABCD точка M — середина стороны AB. Известно, что MC=MD. Докажите, что данный параллелограмм — прямоугольник.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=66, AC=44, MN=24. Найдите AM.
Комментарии:
(2024-01-23 18:12:02) Али: В трапеции � � � � ABCDс основаниями � � = 4 BC=4и � � = 1 6 AD=16диагонали пересекаются в точке � . O.Найдите � � , OC,если � � = 1 2 . AC=12.