ОГЭ, Математика. Геометрия: Задача №797303 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

По условию задачи, четырехугольник вписан в окружность, следовательно, сумма его противоположных углов равна 180° (по свойству описанной окружности).
Т.е. ∠ABC+∠ADC=180°
∠ADC=180°-∠ABC
∠KDA - является смежным углу ADC, следовательно:
∠KDA+∠ADC=180°
Подставляем значение угла ADC:
∠KDA+(180°-∠ABC)=180°
∠KDA+180°-∠ABC=180°
∠KDA+180°-180°=∠ABC
∠KDA=∠ABC
Т.е. эти углы равны.
Рассмотрим треугольникик AKD и BKC.
∠BKC - общий.
∠KDA=∠ABC, это мы определили ранее.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Тогда:
BK/DK=BC/AD
AD=(DK*BC)/BK=(9*16)/18=16/2=8
Ответ: 8

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №383C46

На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.



Задача №4A7E13

Хорды AC и BD окружности пересекаются в точке P, BP=9, CP=15, DP=20. Найдите AP.



Задача №1C7299

В трапеции ABCD основания AD и BC равны соответственно 33 и 11, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.



Задача №BF15E0

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=3 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.



Задача №3F0F37

Найдите площадь трапеции, изображённой на рисунке.

Комментарии:


(2022-11-19 12:43:29) Дианна: Четырехугольник АВСD (AB>BC) вписан в окружность . известно что АD=СD. докажите что биссектриса угла АDВ отсекает от угла ВАС равнобедренный треугольник
(2022-11-19 12:42:58) : Четырехугольник АВСD (AB>BC) вписан в окружность . известно что АD=СD. докажите что биссектриса угла АDВ отсекает от угла ВАС равнобедренный треугольник

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика