ОГЭ, Математика. Геометрия: Задача №121519 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №121519

Задача №455 из 1087
Условие задачи:

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=12 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Решение задачи:

Рассмотрим треугольники ADC и CBD.
∠DCA=∠CBA (т.к. т.к. ∠DCA равен половине градусной меры дуги CA по четвертому свойству углов, связанных с окружностью, и на эту же дугу опирается вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по теореме).
∠CDB - общий для обоих треугольников, следовательно, по признаку подобия, треугольники ADC и CBD - подобны.
Следовательно, по определению подобных треугольников запишем:
CD/BD=AC/BC=AD/CD
AC/BC=AM/MB=12/18 (по первому свойству биссектрисы).
Из этих равенств выписываем:
AD=CD*12/18
BD=CD*18/12, (BD=AD+AB=AD+18+12=AD+30)
AD+30=CD*18/12
CD*12/18+30=CD*18/12
30=CD*18/12-CD*12/18
28=(18*18*CD-12*12*CD)/216
30*216=CD(324-144)
CD=30*216/180=216/6=36
Ответ: CD=36

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4CC220

Радиус окружности, вписанной в трапецию, равен 32. Найдите высоту этой трапеции.



Задача №296855

На прямой AB взята точка M. Луч MD – биссектриса угла CMB. Известно, что /DMC=60°. Найдите угол CMA. Ответ дайте в градусах.



Задача №DDFE48

Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.



Задача №764DFB

Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.



Задача №232A5F

Площадь равнобедренного треугольника равна 1963. Угол, лежащий напротив основания, равен 120°. Найдите длину боковой стороны.

Комментарии:


(2014-05-29 15:39:38) : Спасибо. Так понятнее.
(2014-05-24 18:15:27) Администратор: Танюшка, для простоты понимания в решении изменены рассматриваемые углы. Так должно стать понятней.
(2014-05-24 17:49:30) танюшка: (2014-05-24 17:43:29) танюшка: Объясните, пожалуйста, почему в начале ∠DCB=∠CAB.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика