Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=11, AD=15, AC=52. Найдите AO.
Рассмотрим треугольники AOD и BOC.
По определению трапеции, AD||BC, а AC можно рассматривать как секущую при параллельных прямых. Тогда:
∠DAO=∠BCO (накрест лежащие углы).
∠AOD=∠BOC (вертикальные углы).
Тогда, по первому признаку подобия (по двум углам), данные треугольники подобны.
Следовательно, можем записать пропорцию:
AD/BC=AO/OC
15/11=AO/OC
15*OC=11*AO
При этом AO+OC=AC=52
OC=52-AO, подставляем это равенство в ранее полученную пропорцию:
15*(52-AO)=11*AO
780-15*AO=11*AO
780=15*AO+11*AO
780=26*AO
AO=780/26=30
Ответ: 30
Поделитесь решением
Присоединяйтесь к нам...
На отрезке AB выбрана точка C так, что AC=6 и BC=4. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 5 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1 м?
Точка О – центр окружности, /ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).
В треугольнике ABC AB=BC=37, AC=24. Найдите длину медианы BM.
Найдите угол ABC . Ответ дайте в градусах.
Комментарии: