Площадь прямоугольного треугольника равна 2√
Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin60°=√
sin60°=a/c=√
c=2a/√
По
теореме Пифагора:
a2+b2=c2
a2+b2=(2a/√
a2+b2=4a2/3
3(a2+b2)=4a2
3a2+3b2=4a2
3b2=a2
b2=a2/3
b=a/√
Из условия:
Sтреугольника=ab/2=2√
a*(a/√
a2/√
a2=√
a2=4(√
a2=4
a=2
Ответ: 2
Поделитесь решением
Присоединяйтесь к нам...
Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=16, DC=24, AC=25.
Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=16, BF=12.
Сторона ромба равна 8, а расстояние от центра ромба до неё равно 2. Найдите площадь ромба.
Комментарии: