Найдите площадь треугольника, изображённого на рисунке.
Площадь прямоугольного треугольника S=AC*BC/2
Найдем AC по
теореме Пифагора:
AB2=AC2+BC2
342=AC2+302
AC2=1156-900=256
AC=16
SABC=16*30/2=8*30=240
Ответ: 240
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.
Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке.
На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.
Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
Радиус вписанной в квадрат окружности равен 4√2. Найдите диагональ этого квадрата.

Комментарии: