Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.
Площадь
прямоугольного треугольника равна половине произведения катетов.
BC - катет длиной 36.
По
теореме Пифагора найдем второй катет:
AB2=AC2+BC2
392=AC2+362
1521=AC2+1296
225=AC2
AC=15
S=AC*BC/2=15*36/2=15*18=270
Ответ: S=270
Поделитесь решением
Присоединяйтесь к нам...
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 72°. Найдите величину угла OMK. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке.
Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Точка K — середина стороны BC. Докажите, что AK — биссектриса
угла BAD.
Сторона ромба равна 38, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Комментарии:
(2017-01-09 21:30:31) Администратор: Гоша, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-06 19:02:48) Гоша: Найдите площадь прямоугольного треугольника,если его катет и гипотенуза равны соответственно 18 и 30