Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.
Площадь
прямоугольного треугольника равна половине произведения катетов.
BC - катет длиной 36.
По
теореме Пифагора найдем второй катет:
AB2=AC2+BC2
392=AC2+362
1521=AC2+1296
225=AC2
AC=15
S=AC*BC/2=15*36/2=15*18=270
Ответ: S=270
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=10:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника ABC.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=11°. Найдите угол NMB. Ответ дайте в градусах.
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.
Сторона равностороннего треугольника равна 2√
Центральный угол AOB опирается на хорду АВ длиной 6. При этом угол ОАВ равен 60°. Найдите радиус окружности.

Комментарии:
(2017-01-09 21:30:31) Администратор: Гоша, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-06 19:02:48) Гоша: Найдите площадь прямоугольного треугольника,если его катет и гипотенуза равны соответственно 18 и 30