ОГЭ, Математика. Геометрия: Задача №077612 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1
AB - гипотенуза, BC - катет.
Найдем AC по теореме Пифагора:
AB2=BC2+CA2
392=152+CA2
1521=225+CA2
1296=CA2
CA=36
Для треугольника ABC:
sinA=CB/AB=15/39=5/13
Для треугольника ACD:
sinA=CD/AC => CD=AC*sinA=36*5/13=180/13=13 целых и 11/13
Ответ: СD=13 целых и 11/13


Вариант №2 (предложил Даниил)
AB - гипотенуза, BC - катет.
Найдем AC по теореме Пифагора:
AB2=BC2+CA2
392=152+CA2
1521=225+CA2
1296=CA2
CA=36
Площадь любого треугольника равна половине произведения высоты на сторону, к которой высота проведена, т.е. S=(a*h)/2.
SABC=(AB*CD)/2
Так же площадь треугольника, если треугольник прямоугольный, можно найти по формуле: половина произведения катетов.
SABC=(AC*BC)/2
Так как это площади одного и того же треугольника, то:
(AB*CD)/2=(AC*BC)/2
AB*CD=AC*BC
39*CD=36*15
CD=36*15/39=36*5/13=180/13=13 целых и 11/13
Ответ: 13 целых и 11/13

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №C3CA4A

Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, описанной около этого треугольника.



Задача №EB43A2

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №1CB970

Две трубы, диаметры которых равны 7 см и 24 см, требуется заменить одной, площадь поперечного сечения которой равна сумме площадей поперечных сечений двух данных. Каким должен быть диаметр новой трубы? Ответ дайте в сантиметрах.



Задача №14B877

Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведённую к гипотенузе.



Задача №8C652D

В параллелограмме KLMN точка B — середина стороны LM. Известно, что BK=BN. Докажите, что данный параллелограмм — прямоугольник.

Комментарии:


(2016-04-13 14:40:14) Администратор: Даниил, Ваш вариант решения добавлен на наш сайт, спасибо Вам за решение.
(2016-04-12 23:33:56) Администратор: Даниил, обязательно рассмотрю Ваше решение.
(2016-04-10 21:48:56) Даниил: 2 вариант (мой взгляд) AB - гипотенуза, BC - катет. Найдем AC по теореме Пифагора: AB2=BC2+CA2 392=152+CA2 1521=225+CA2 1296=CA2 CA=36 S треугольника=AC*CB/2 (для прямоугольного тр) S треугольника=AB*CD/2 (т.к. CD-высота) значит AB*CD/2=AC*CB/2 39*CD=15*36 (2-ки сокращаются) CD=540/39 (15*36=540) CD=13 и 11/13

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика