Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.
По
свойству равностороннего треугольника:
Тогда:
6r=a√
a=6r/√
По второму свойству
равностороннего треугольника
высота так же является и
медианой.
Следовательно, она делит сторону, на которую опирается, пополам.
К тому же высота образует
прямоугольный треугольник, следовательно, можно воспользоваться
теоремой Пифагора:
a2=h2+(a/2)2
(10√
100*3=h2+(5√
300=h2+25*3
h2=300-75=225
h=√
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь треугольника, изображённого на рисунке.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=8, CK=13.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Боковая сторона равнобедренного треугольника равна 25, а основание равно 30. Найдите площадь этого треугольника.
Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.
Комментарии: