Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол OVT. Ответ дайте в градусах.
SO=VO (т.к. это радиусы окружности)
SO=VO=ST=TV (по
определению ромба)
Проведем отрезок OT.
OT тоже радиус окружности, следовательно OT=SO=VO=ST=TV
Следовательно, треугольники STO и TVO -
равносторонние, а все углы равностороннего треугольника равны 60° (по
свойству).
Следовательно и ∠OVT=60°
Ответ: 60
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Площадь прямоугольного треугольника равна
722√
Точка О – центр окружности, /BOC=70° (см. рисунок). Найдите величину угла BAC (в градусах).
Комментарии: