Касательные в точках A и B к окружности с центром O пересекаются под углом 28°. Найдите угол ABO. Ответ дайте в градусах.
Проведем отрезок CO.
Рассмотрим треугольник ACO.
∠ACO=∠ACB/2=28°/2=14° (по
второму свойству касательной).
∠CAO=90° (по
первому свойству касательной)
По
теореме о сумме углов треугольника:
180°=∠AOC+∠ACO+∠CAO
180°=∠AOC+14°+90°
∠AOC=76°
Рассмотрим треугольники ACO и BCO.
OC - общая сторона
AC=BC (по
второму свойству касательной)
OA=OB (т.к. это радиусы)
Следовательно, по
третьему признаку, данные треугольники равны.
Тогда и ∠AOC=∠BOC=76°
Рассмотрим треугольник AOB.
OA=OB (т.к. это радиусы)
Следовательно, треугольник AOB -
равнобедренный.
Тогда ∠BAO=∠ABO (по
свойству равнобедренного треугольника).
По
теореме о сумме углов треугольника:
180°=∠AOB+∠OAB+∠ABO
180°=∠AOC+∠BOC+2∠ABO
180°=76°+76°+2∠ABO
28°=2∠ABO
∠ABO=14°
Ответ: 14
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 1 и 7.
Укажите номера верных утверждений.
1) Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая высота равнобедренного треугольника является его биссектрисой.
Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OKI. Ответ дайте в градусах.
В трапеции ABCD известно, что AD=4, BC=2, а её площадь равна 69. Найдите площадь треугольника ABC.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=44, MN=24. Площадь треугольника ABC равна 121. Найдите площадь треугольника MBN.
Комментарии: