Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=19° и ∠ACB=160°. Найдите угол DCB. Ответ дайте в градусах.
Рассмотрим треугольник ACD.
По
теореме о сумме углов треугольника:
180°=∠CAB+∠ADC+∠ACD
180°=19°+∠ADC+∠ACD
∠ADC+∠ACD=161°
Так как AD=AC, то данный треугольник
равнобедренный.
Тогда, ∠ADC=∠ACD (по
свойству равнобедренного треугольника), получаем, что:
∠ADC=∠ACD=161°/2=80,5°
∠DCB=∠ACB-∠ACD=160°-80,5°=79,5°
Ответ: 79,5
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольном треугольнике ABC катет AC=35, а высота CH, опущенная на гипотенузу, равна 14√
Радиус вписанной в квадрат окружности равен 2√2. Найдите радиус окружности, описанной около этого квадрата.
Проектор полностью освещает экран A высотой 100 см, расположенный на расстоянии 230 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 320 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?
Сторона ромба равна 24, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
Комментарии: