ОГЭ, Математика. Геометрия: Задача №EB43A2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №EB43A2

Задача №248 из 1087
Условие задачи:

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.

Решение задачи:

1) По условию задачи /BED=/EDB, следовательно треугольник BDE - равнобедренный (по свойству). По определению равнобедренного треугольника BE=BD. Смежные углы для /BED и /EDB тоже равны, /BDC=/BEA.
2) Рассмотрим треугольники ABE и CBD.
AE=CD (по условию),
BE=BD (согласно п.1),
/AEB=/CDB (из п.1),
следовательно эти треугольники равны (по первому признаку равенства треугольников), а это значит, что BA=BC. Следовательно треугольник ABC - равнобедренный (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №7AD11C

Точка О – центр окружности, /AOB=128° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №D4ECD4

Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.



Задача №CC279D

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 150°, а CD=33.



Задача №08369A

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=32.



Задача №C4F011

Радиус окружности, описанной около равностороннего треугольника, равен 23. Найдите длину стороны этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Равнобедренный треугольник - это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика