В выпуклом четырехугольнике ABCD AB=BC, AD=CD, ∠B=100° , ∠D=104°. Найдите угол A . Ответ дайте в градусах.
Проведем диагональ AC.
Рассмотрим треугольник ABC.
Так как AB=BC, значит треугольник ABC -
равнобедренный.
По
теореме о сумме углов треугольника:
180°=∠B+∠BAC+∠BCA.
180°=100°+∠BAC+∠BCA.
80°=∠BAC+∠BCA.
По
свойству равнобедренного треугольника, ∠BAC=∠BCA, тогда
∠BAC=∠BCA=80°/2=40°.
Треугольник ACD тоже
равнобедренный.
Аналогичными вычислениями получаем:
180°=104°+∠DAC+∠DCA.
∠DAC+∠DCA=76°/2=38°
∠A=∠BAC+∠CAD=40°+38°=78°
Ответ: 78
Поделитесь решением
Присоединяйтесь к нам...
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=17. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 7.
Радиус вписанной в квадрат окружности равен 4√2. Найдите диагональ этого квадрата.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Точка О – центр окружности, /AOB=128° (см. рисунок). Найдите величину угла ACB (в градусах).
Комментарии: